Document Type : Original Article

Authors

1 PhD in Curriculum Planning, Department of Educational Sciences, Faculty of Humanities, Arak University, Arak, Iran

2 Assistant Professor, Department of Educational Sciences, Arak Branch, Islamic Azad University, Arak, Iran

3 Associate Professor, Faculty of Humanities, Department of Educational Sciences and Psychology, Arak University, Arak, Iran

Abstract

The aim of the present study was to compare the effectiveness of augmented reality, virtual reality, mollage and traditional education on cognitive load in the biology lesson of 10th grade female students in Arak city. The method of the current research was semi-experimental using the pre-test-post-test method with a control group. The statistical population was all 10th grade female students of secondary school in Arak city, 113 of them (in the form of four classrooms) were selected as a statistical sample by random cluster sampling method and finally the replacement of the classes in the experimental and control groups It happened randomly. To measure the level of cognitive load, Pass and Van Merenbauer rating scale was used. The data were analyzed using descriptive statistics (mean and standard deviation) and inferential statistics (one-way analysis of covariance and for pairwise comparison of groups using Benferroni correction) and spss software version 23. The findings of the research showed that there was a significant difference between the cognitive load of the students who were trained with augmented reality, virtual reality, mollage and traditional methods, and among these methods, augmented reality had the greatest effect in reducing cognitive load, and the teaching method had the least effect had a tradition In other words, using the method of augmented reality, virtual reality and mollage in line with each other, and finally, traditional education, respectively, introduced the least amount of load when entering information into active memory in students. According to the results, teachers should be given the necessary training to use such technologies and use augmented reality and virtual reality in their teaching methodology, while not paying attention to other available facilities, such as mollages, which if used correctly Such facilities, sometimes on par with technologies, can be used to reduce cognitive load.

Keywords

احدی، فاطمه و سلیمانی، محسن. (1393). مقایسه تأثیر دو روش تدریس به شیوه ارائه مثال به شیوه حلشده کامل و حلشده ناقص بر بار شناختی دانشجویان در درس زبان تخصصی پزشکی. مجله ایرانی آموزش در علومپزشکی، (4)14: 302-291.
زارعی زوارکی، اسماعیل، و غریبی، فرزانه. (1391). تأثیر آموزشی چندرسانهای بر میزان یادگیری و یادداری ریاضی دانشآموزان دختر کمتوان ذهنی پایه چهارم شهر اراک. روانشناسی افراد استثنائی, 2(5), 1-19.
علیآبادی، خدیجه .(1397). مقدمات تکنولوژی آموزشی، تهران، انتشارات پیامنور.
فامیل خلیلی، اعظم و عبدی، جواد. (1390). غوطه وری در محیط یادگیری مجازی. مجله ابزار دقیق، شماره 29 ، 21.
فرج اللهی، مهران، ظریف صنایعی، ناهید. (1388). آموزش مبتنی بر فناوری اطلاعات و ارتباطات در آموزشعالیدوماهنامه علمی-پژوهشی راهبردهای آموزش در علومپزشکی، (4)2، 171-167.
محبوبی، طاهر؛ زارع، حسین؛ سرمدی، محمدرضا؛ فردانش، هاشم و فیضی، آوات. (1391). تأثیر رعایت اصول طراحی آموزشی بر بارشناختی موضوعات یادگیری در محیطهای یادگیری چندرسانهای. فصلنامه مطالعات برنامه درسی آموزشعالی، (6)3، صف 46-29.
Adams, C. M. & Wilson, T. D. (2011). Virtual cerebral ventricular system: An MR‐based three‐dimensional computer model. Anatomical sciences education, 4(6), 340-347.
Al-Azawi, R., Albadi, A., Moghaddas, R. and Westlake, J.( 2019. Exploring the Potential of Using Augmented Reality and Virtual Reality for STEM Education. In International Workshop on Learning Technology for Education in Cloud (pp. 36-44). Springer, Cham.
Alfalah, S. F. Falah, J. F. Alfalah, T. Elfalah, M. Muhaidat, N & Falah, O. (2019). A comparative study between a virtual reality heart anatomy system and traditional medical teaching modalities. Virtual Reality, 23(3), 229-234.
Andersen, S. A. W. Konge, L & Sørensen, M. S. (2018). The effect of distributed virtual reality simulation training on cognitive load during subsequent dissection training. Medical teacher, 40(7), 684-689.
Attarbashi Moghadam, F. Emami, A. Akhavan Karbasi, M. H. Kavyani, K & Haerian, A. (2015). Evaluation of Oral Hygiene Instruction’s Condition in Private Office in Yazd City. Tolooebehdasht, 13(5), 118-124.
Azer, S. A & Azer, S. (2016). 3D anatomy models and impact on learning: a review of the quality of the literature. Health professions education, 2(2), 80-98.
Bellani, M. Fornasari, L. Chittaro, L & Brambilla, P. (2011). Virtual reality in autism. state of the art, epidemiology and psychiatric sciences, vol. 20, 3: 235-238.
Benbelkacem, S. Zenati-Henda, N. Zerarga, F. Bellarbi, A., Belhocine, M., Malek, S & Tadjine, M. (2011). Augmented reality platform for collaborative E-maintenance systems. In Augmented reality-some emerging application areas. IntechOpen.
Bertrand, O. (2004). Planning human resources: methods, experiences and practices. UNESCO, International Institute for Educational Planning.
Cabrilo, I. Sarrafzadeh, A., Bijlenga, P. Landis, B. N & Schaller, K. (2014). Augmented reality-assisted skull base surgery. Neurochirurgie, 60(6), 304-306.
Chaisson, N. F & Ashton, R. W. (2021). Virtual interviews and their effect on cognitive load for graduate medical education applicants and programs. ATS scholar, 2(3), 309-316.
Chan, L. K & Cheng, M. M. (2011). An analysis of the educational value of low-fidelity anatomy models as external representations.Anatomical Sciences Education, 4, 256–263.
Chen, P. Liu, X. Cheng, W & Huang, R .(2017). A review of using Augmented Reality in Education from 2011 to 2016. In Innovations in smart learning ,Pp. 13-18. Springer, Singapore.
Cheng, K. H & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Science Education and Technology, vol. 22., No.4, Pp. 449–462.
Chiang, T. H. Yang, S. J & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17(4), 352-365.
Cunha, P. Brandão, J. Vasconcelos, J. Soares, F & Carvalho, V. (2016). Augmented reality for cognitive and social skills improvement in children with ASD. In 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV) (pp. 334-335). IEEE.
Deveci Topal A, Ocak MA. (2014). The effect of the anatomy course prepared in the blended learning environment on students’ academic achievement. Educ Tech Theor Pract 4:48–62.
Di Serio, Á. Ibáñez, M. B & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, No. 68, Pp. 586-596.
Ganguly, P. K. (2010). Teaching and Learning of Anatomy in the 21st Century: Direction and the Strategies. The Open Medical Education Journal, 3(1).
Heinz, M. Büttner, S. and Röcker, C. (2019), June. Exploring training modes for industrial augmented reality learning. In Proceedings of the  12th  ACM  International  Conference  on
     PErvasive Technologies Related to Assistive Environments (pp. 398-401). ACM.
Hua, J. Holton, K. Miller, A., Ibikunle, I. and Pico, C.C.(2019). Augmented Reality and Its Role in Abdominal Laparoscopic Surgical.retrived by https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=767838
Huang, K.T. Ball, C. Francis, J. Ratan, R. Boumis, J. and Fordham, J. (2019). Augmented Versus Virtual Reality in Education: An Exploratory Study Examining Science Knowledge Retention When Using Augmented Reality/Virtual Reality Mobile Applications. Cyberpsychology, Behavior, and Social Networking, 22(2), pp.105-110.
Jalani, N. H & Sern, L. C. (2015). The example-problem-based learning model: applying cognitive load theory. Procedia-Social and Behavioral Sciences, 195, 872-880.
Jamali, S. S. Shiratuddin, M. F. Wong, K. W & Oskam, C. L. (2015). Utilising mobile-augmented reality for learning human anatomy. Procedia-Social and Behavioral Sciences, 197, 659-668.
Johnson, E. O. Charchanti, A. V & Troupis, T. G. (2012). Modernization of an anatomy class: From conceptualization to implementation. A case for integrated multimodal–multidisciplinary teaching. Anatomical sciences education, vol.5., No. 6, Pp.354-366.
Kalyuga, S. (2009). Knowledge elaboration: A cognitive load perspective. Learning and Instruction, 19(5), 402-410.
Kerawalla, L. Luckin, R. Seljeflot, S & Woolard, A. (2006). “Making it real”: exploring the potential of augmented reality for teaching primary school science. Virtual reality, 10 (3-4), 163-174.
Khot, Z. Quinlan, K. Norman, G. R & Wainman, B. (2013). The relative effectiveness of computer‐based and traditional resources for education in anatomy. Anatomical sciences education, 6(4), 211-215.
Kilmon, C. A. Brown, L. Ghosh, S & Mikitiuk, A. (2010). Immersive virtual reality simulations in nursing education. Nursing education perspectives, 31(5), 314-317.
Kirkley, B. S. E & Kirkley, J. R. (2004). Creating Next Generation Blended Learning Environments Using Mixed Reality, Video Games and Simulations, TechTrends 49(3). 42-53.
Kirschner, P. A. Sweller, J. Kirschner, F & Zambrano, R. J. (2018). From cognitive loadtheory to collaborative cognitive load theory. International Journal of ComputerSupported Collaborative Learning, 13, 213–233.
Küçük, S. Kapakin, S & Göktaş, Y. (2016). Learning anatomy via mobile augmented reality: effects on achievement and cognitive load. Anatomical sciences education, vol.9 .No. 5, Pp. 411-421.
Lindgren, R. Tscholl, M. Wang, S & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174-187.
McCuskey, R. S. Carmichael, S. W & Kirch, D. G. (2005). The importance of anatomy in health professions education and the shortage of qualified educators. Academic Medicine, 80(4), 349-351.
McKeown, P. P. Heylings, D. J. A., Stevenson, M. McKelvey, K. J. Nixon, J. R. & R McCluskey, D. (2003). The impact of curricular change on medical students' knowledge of anatomy. Medical Education, 37(11), 954-961.
MIHELJ M., PODOBNIK J. (2012). Human haptic system. In Haptics for Virtual Reality and Teleoperation, Intelligent Systems, Con-trol and Automation: Science and Engineering. Springer Netherlands, vol. 64, pp. 41–55.
Moxham, J. B. Shaw, H. Crowson, R & Plaisant, O. (2020). The future of clinical anatomy. European Journal of Anatomy, 15(1), 29-46.
Nincarean, D. Alia, M. B. Halim, N. D. A & Rahman, M. H. A. (2013). Mobile augmented reality: The potential for education. Procedia-social and behavioral sciences, 103, 657-664.
Nishimoto, S. Tonooka, M. Fujita, K. Sotsuka, Y. Fujiwara, T. Kawai, K & Kakibuchi, M. (2016). An augmented reality system in lymphatico-venous anastomosis surgery. Journal of surgical case reports, 2016(5).
Okamoto, T. Onda, S. Yanaga, K. Suzuki, N. & Hattori, A. (2015). Clinical application of navigation surgery using augmented reality in the abdominal field. Surgery today, 45(4), 397-406.
Paas, F. van Gog, T & Sweller, J. (2010). Cognitive load theory: New conceptualizations, specifications, and integrated research perspectives. Educational Psychology Review, 22(2), 115-121.
Preece, D. Williams, S. B. Lam, R & Weller, R. (2013). “Let's get physical”: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anatomical sciences education, 6(4) 216-224.
Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533-1543.‌
Schnotz, W. Fries, S & Horz, H. (2009). Motivational aspects of cognitive load theory. Contemporary motivation research: From global to local perspectives, 69-96.
Sewell JL, Boscardin CK, Young JQ, Cate Ten O, O’Sullivan PS. (2017). Learner, patient, and supervisor features are associated with different types of cognitive load during procedural skills training. Acad Med. 92:1622–1631.
Shea CH, Lai Q, Black C, Park JH. (2000). Spacing practice sessions across days benefits the learning of motor skills. Hum Mov Sci. 19:737–760. Sorensen MS, Moseg.
Tinnerman, L. S. (2006). A comparative study between traditional and distance education instructional environments involving two graduate level learning disabilities classes. International journal of instructional technology and distance learning, 3(4), 31-42.
Sweller, J. Van Merri€enboer, J. J & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 32(2), 261–262.
Sweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation (Vol. 55, pp. 37-76). Academic Press.
Sweller, J. Van Merrienboer, J. J & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review10(3), 251-296.
Topuz, Y. N/A Correction: (O-74). (2018(. Virtual reality technology in anatomy education. Anatomy, 12(3), pp.158-158.
Wainman, B. Wolak, L. Pukas, G. Zheng, E & Norman, G. R. (2018). The superiority of three‐dimensional physical models to two‐dimensional computer presentations in anatomy learning. Medical education52(11), 1138-1146.
Wu, H. K. Lee, S. W. Y. Chang, H. Y & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education, Computers and Education, 62, 41-49.
Yammine, K & Violato, C. (2016). The effectiveness of physical models in teaching anatomy: a meta-analysis of comparative studies. Advances in Health Sciences Education, 21(4), 883-895.
Yuen, S. C. Y. Yaoyuneyong, G & Johnson, E. (2011). Augmented reality: An overview and five directions for AR in education. Journal of Educational Technology Development and Exchange (JETDE), 4(1), 11.