Document Type : Original Article

Authors

1 Associate Professor, Department of Knowledge & Information Science, Azarbaijan Shahid Madani University, Tabriz, Iran.

2 Assistant Professor, Department of Educational Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.

10.30473/t-edu.2025.74471.1272

Abstract

The purpose of the present research was to study the effect of Artificial Intelligence Literacy (AIL) of students on students' skills in smart device security. This applied research was conducted with a quantitative approach and a survey method. The statistical population of the study was 1307 undergraduate and graduate students at the Faculty of Education and Psychology.  The sample size was 194 cases and a random sampling method was applied. The data collection tool was a questionnaire that was distributed among the students in person in printed format from the first of May to the end of June 2024. Confirmatory factor analysis was conducted using Smart PLS for validity and reliability of the questionnaire.  SPSS software was used to analyse data. The average of AIL was 4.63 and the device's security skill was 4.24. No difference was observed in the status of students based on demographics. Based on the independent t-test, a significant difference was observed at the 0.03 level in the device's security skill based on the gender and field of study of the students.  The results of the ANOVA test showed a statistically significant difference at the 0.049 level in the device's security skill based on the field of study of the students. Based on the Pearson test, the highest correlation was between usage and evaluation and the lowest between usage and ethics of AIL; also, there was a positive and significant relationship between AIL and device security skill. The results of the regression test showed that the evaluation and usage dimensions had positive predictive power with beta coefficients of (0.356) and (0.279), and explained 36.2 percent of the changes in the dependent variable.

Keywords

بکری‌زاده، حکیم؛ پناهی، مریم  و جمالوندی، بهزاد. (1402). نقش سواد دیجیتال بر پذیرش فناوری در کتابداران دانشگاه پیام نور. فناوری و دانش پژوهی در تعلیم و تربیت، 3 (2)، 27-38. https://doi.org/10.30473/t-edu.2023.69772.1112
خطیب زنجانی، نازیلا و کریمی، مهسا. (1403). شناسایی ابعاد، مولفه‌ها و شاخص های کارکردهای هوش مصنوعی در آموزش عالی با رویکرد فراترکیب. فناوری و دانش پژوهی در تعلیم و تربیت، انتشار آنلاین،  https://doi.org/10.30473/t-edu.2025.73448.1240
زنگانه، امیرحسین؛ حجازی، الهه و صالحی، کیوان. (1404). عوامل موثر بر پذیرش فناوری هوش مصنوعی در بین اعضای هیات علمی دانشگاه تهران. فناوری و دانش پژوهی در تعلیم و تربیت، (5)1، 65-80.  https://doi.org/10.30473/t-edu.2025.73017.1228
عزیزی، زهره؛ رحیمی، صالح و احمدی، وکیل. (1403). نقش مهارت‌های دیجیتال در ارتقای سواد حریم خصوصی برخط دانشجویان کارشناسی دانشگاه رازی. علوم و فنون مدیریت اطلاعات، 10 (1)، 7-30. https://doi.org/10.22091/stim.2021.7113.1611
مقدمی، مریم (1401). هوش مصنوعی و سواد اطلاعاتی دانشجویان: ارائه فرصت ها و بررسی تهدیدها. پنجمین سمینار سواد رسانه‌ای و اطلاعاتی: پرورش اعتماد برای سواد رسانه‌ای و اطلاعاتی، تهران، دانشگاه تهران. قابل دسترس در:  https://civilica.com/doc/1551584
 
Alamäki, A. Nyberg, C. Kimberley, A & Salonen, A. O. (2024, March). Artificial intelligence literacy in sustainable development: A learning experiment in higher education. In Frontiers in Education (Vol. 9, p. 1343406). Frontiers Media SA.
Alimi, A. E. Buraimoh, O. F. Aladesusi, G. A., & Babalola, E. O. (2021). University students’ awareness of, access to, and use of artificial intelligence for learning in Kwara State. Indonesian Journal of Teaching in Science, 1(2), 91-104.
Anderson, J. C & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103, 411–423.
Bland, J. M & Altman, D. G. (1997). Cronbach’s alpha. BMJ British Medical Journal, 314(7080), 572.
Buckingham, D. (2004). Children talking television: The making of television literacy. Routledge.
Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming. New York: Routledge.
Campos, J. D. S & Campos, J. R. (2023). Structural Equation Model Evaluating Katz's Triplet Managerial Skills and Its Relationship to Human Capital. Journal of Social Entrepreneurship Theory and Practice, 2(2), 63-75.
Celebi, C. Yılmaz, F. Demir, U & Karakuş, F. (2023). Artificial intelligence literacy: An adaptation study. Instructional Technology and Lifelong Learning4(2), 291-306.
Cerný, M. (2024). University students’ conceptualisation of AI literacy: Theory and empirical evidence. Social Sciences, 13(3), 129.
Cohen, L. Manion, L & Morrison, K. (2018). Research methods in education. routledge.
Copeland, B. (2024, May 15). Artificial intelligenceEncyclopedia Britannica. Retrieved  online at: https://www.britannica.com/technology/artificial-intelligence
Coşkun, S. Kayıkcı, Y & Gençay, E. (2019). Adapting engineering education to industry 4.0 vision. Technologies, 7(1), 10.
Davenport, T. H & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108-116.
Dunn, S. C. Seaker, R. F & Waller, M. A. (1994). Latent variables in business logistics research: Scale development and validation. Journal of Business Logistics, 15, 145–172.
Floridi, L. (2019). What the Near Future of Artificial Intelligence Could Be. Philosophy & Technology, 32(1), 1–15.
Fornell, C & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50.
Hair, J. F. Hult. M, G. T. Ringle, C. M & Sarstedt, M. (2014). A Primer On Partial Least Squares Structural Equation Modelling (PLS_SEM) (p. 293). SAGE Publication Inc.
Hair, J. Black, W. C. Babin, B. J & Anderson, R. E. (2010) Multivariate data analysis (7th ed.). Upper Saddle River, New Jersey: Pearson Educational International.
Hair, Joe F. Ringle, C. M & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. The Journal of Marketing Theory and Practice, 19(2), 139–152. doi.org/10.2753/MTP1069-6679190202
Jobin, A. Ienca, M & Vayena, E. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine Intelligence, 1(9), 389–399.
Keles, P. U & Aydin, S. (2021). University Students' Perceptions about Artificial Intelligence. Shanlax International Journal of Education, 9, 212-220.
Kong, S. C. Cheung, W. M. Y & Zhang, G. (2021). Evaluation of an artificial intelligence literacy course for university students with diverse study backgrounds. Computers and Education: Artificial Intelligence, 2, 100026. doi.org/10.1016/j.caeai.2021.100026
Krejcie, R. V & Morgan, D. W. (1970). Determining sample size for research activities. Education and Psychological Measurement, 30, 607-610.
Laupichler, M. C. Aster, A. Schirch, J & Raupach, T. (2022). Artificial intelligence literacy in higher and adult education: A scoping literature review. Computers and Education: Artificial Intelligence, 3, 100101.
Lee, Y.-J. Oh, J & Hong, C. (2024). Exploratory research on understanding university students’ artificial intelligence literacy in a Korean university. Online Journal of Communication and Media Technologies, 14(3), e202440. doi.org/10.30935/ojcmt/14711
Lérias, E. Guerra, C & Ferreira, P. (2024). Literacy in artificial intelligence as a challenge for teaching in higher education: A case study at portalegre polytechnic university. Information15(4), 205. doi.org/10.3390/info15040205
 Long, D & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1-16.  doi.org/10.1145/3313831.3376727
Long, D. Blunt, T & Magerko, B. (2021). Co-designing AI literacy exhibits for informal learning spaces. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1-35.
Memon, A. H & Rahman, I. A. (2013). Analysis of cost overrun factors for small scale construction projects in Malaysia using PLS-SEM method. Modern applied science, 7(8), 78-88. DOI:10.5539/mas.v7n8p78
Miao, F. Holmes, W. Huang, R & Zhang, H. (2021). AI and education: A guidance for policymakers. Unesco Publishing. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000376709/PDF/376709eng.pdf.multi
Miot, H. A. (2018). Correlation analysis in clinical and experimental studies. Jornal vascular brasileiro, 17, 275-279.
Netemeyer, R. G. (2003). Scaling procedures: Issues and applications. Sage Publications.
Ng, D. T. K. Leung, J. K. L. Chu, K. W. S & Qiao, M. S. (2021a). AI literacy: Definition, teaching, evaluation and ethical issues. Proceedings of the Association for Information Science and Technology, 58(1), 504-509.
Ng, D. T. K. Leung, J. K. L. Chu, S. K. W & Qiao, M. S. (2021b). Conceptualizing AI literacy: An exploratory  review. Computers and Education: Artificial Intelligence, 2, 100041.
Norman, D. (2013). The Design of Everyday Things. Revised and Expanded Edition. New York.
Nunnally, J & Berstein, I. (1994). Psychometric theory. New York: McGraw Hill.
Pepito, M. J. T & Acledan, M. Y. (2022). Influence of digital literacy and self-directed learning in the online learning success of STEM college students. International Journal of Humanities Social Sciences and Education, 9(1), 88-100.
Ringle, C. M. Wende, S & Becker, J. (2024). SmartPLS 4. Bönningstedt: SmartPLS. Retrieved from https://www.smartpls.com
Rodríguez-de-Dios, I. Igartua, J. J & González-Vázquez, A. (2016, November). Development and validation of a digital literacy scale for teenagers. In Proceedings of the fourth international conference on technological ecosystems for enhancing multiculturality (pp. 1067-1072).
Shiri, A. (2024). Artificial intelligence literacy: a proposed faceted taxonomy. Digital Library Perspectives, 40(4), 681-699.
Stevens, J. P. (2002). Applied multivariate statistics for the social sciences (4th ed.). Erlbaum.
Stryker, C & Eda Kavlakoglu, E. (2024). What is artificial intelligence (AI)? Retrieved on November 29, 2024 from: https://www.ibm.com/topics/artificial-intelligence
Touretzky, D. Gardner-McCune, C. Martin, F & Seehorn, D. (2019, July). Envisioning AI for K-12: What should every child know about AI?. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 9795-9799).
Van Deursen, A. J & Van Dijk, J. A. (2019). The first-level digital divide shifts from inequalities in physical access to inequalities in material access. New media & society21(2), 354-375.
Venkatesh, V. Thong, J. Y & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
 
Wang, B. Rau, P. L. P & Yuan, T. (2023). Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour & information technology, 42(9), 1324-1337. https://doi.org/10.1080/0144929X.2022.2072768
Yahşi, H. Filizci, A. E. A. Yilmaz, I. Oztaş, D & Eraslan, E. (2024). The potential of artificial intelligence applications in health surveillance. In Gulcin Bilgici Cengiz (Ed.),Current Research in Science and Mathematics (1st ed., pp. 45-68). Liver de lyon. Doi: 10.528/zenodo.14558812
Yi, Y. (2021). Establishing the concept of AI literacy: Focusing on competence and purpose. JAHR-–European Journal of Bioethics, 12 (2), 353–368.